文章编号: 0258-7025(2010)Supplement 1-0024-05

连续激光二极管侧面抽运高重复频率大能量 被动调 Q 激光器

郭家喜 金光勇 王 超 陈薪羽 于永吉 王奕博 郝大伟 (长春理工大学理学院,吉林长春 130022)

摘要 报道了高重复频率大能量连续激光二极管(LD)侧面抽运 Cr⁴⁺:YAG 被动调 Q Nd:YAG 激光器。把工作物 质等效为厚透镜,根据 ABCD 定律计算了平-平腔、平-凹腔、平-凸腔中激光束的模参数,通过对比基模体积,选择 了平-凸腔结构。实验中获得了高重复频率大能量被动调 Q 激光,并实现了 TEM₀₀模运转。当抽运功率为 136.20 W时,被动调 Q 激光单脉冲能量达到 2.46 mJ,峰值功率 24.36 kW,脉冲重复频率 4.22 kHz,脉冲宽度 101 ns,脉冲幅度抖动约为 5%,频率抖动约为 5%,光束远场发散角小于 1.5 mrad,光束质量 M² 因子约为 1.3。 关键词 激光器;高重复频率大能量;被动调 Q;激光二极管侧面抽运 中图分类号 TH248.1 文献标识码 A doi: 10.3788/CJL201037s1.0024

High Repetition Rate and Large Energy Passively Q-Switched Laser Side-Pumped by Continous-Wave Laser Diode

Guo Jiaxi Jin Guangyong Wang Chao Chen Xinyu Yu Yongji Wang Yibo Hao Dawei (School of Science, Changchun University of Science and Technology, Changchun, Jilin 130022, China)

Abstract High repetition rate and large energy passively *Q*-switched Nd: YAG laser side-pumped by continous-wave (CW) laser diode is reported by using Cr^{i+} : YAG crystal as saturable absorbers. Regarding operation material as thermal thick lens, the laser beam parameters of plane-plane cavity, plano-concave cavity and plano-convex cavity are calculated according to the *ABCD* matrix theory of resonators. By comparing the fundamental mode volume, plano-convex cavity is selected. A high repetition rate and large energy passively *Q*-switched laser beam is obtained, and the TEM₀₀ mode is achieved. A single pulse energy of 2. 46 mJ, peak power of 24. 36 kW, repetition rate of 4.22 kHz, pulse width of 101 ns are obtained at a pump power of 136.20 W, the amplitude fluctuation and frequency fluctuation are about 5%, the corresponding M^2 factor is about 1.3, and the beam divergence angle of far-field is less than 1.5 mrad.

Key words lasers; high repetition rate and large energy; passive Q-switch; laser diode side-pumped

1 引 言

与主动调 Q 激光器相比,连续激光二极管(LD) 抽运的被动调 Q 激光器具有成本低、运转可靠和结 构简单等优点,并能产生纳秒级的大峰值功率和高 重复频率激光脉冲,被广泛应用于测距、微量切削加 工、遥感等领域。目前,连续被动调 Q 激光器大多 采用端面抽运结构,这类激光器受限于严重的热效 应,输出激光单脉冲能量一般小于 1 mJ^[1~4],峰值 功率也不高。相对于端面抽运,侧面抽运结构激光 器的热效应低得多,能实现高功率输出,采用被动调

收稿日期: 2010-01-17; 收到修改稿日期: 2010-03-05

基金项目: 吉林省教育厅基金(2007-36)资助课题。

作者简介:郭家喜(1982—),男,硕士研究生,主要从事激光物理与新型激光器等方面的研究。

E-mail: victorian_cool@126.com

导师简介:金光勇(1971—),男,教授,博士生导师,主要从事半导体激光抽运固体激光器方面的研究。 E-mail:jgyciom@163.com

Q更可以获得高重复频率大能量脉冲激光^[5~10],满 足远距离测距等领域的应用要求,成为新的研究 热点。

Nd:YAG 的光学质量好、热导率高、阈值低,容 易实现激光器大功率连续运转,是目前最常用的激 光介质。Cr⁴⁺:YAG 在0.9~1.2 μm 具有宽的吸收 带和良好的可饱和吸收特性,与染料及色心 F²:LiF 晶体相比,Cr⁴⁺:YAG 具有热导性能好、吸收截面 大、饱和光强小、损伤阈值高、光化学性质稳定、无退 化现象、使用方便和寿命长等优点,非常适合对 Nd: YAG 激光器进行被动调 Q。

本文采用 Cr⁴⁺:YAG 晶体对大功率连续 LD 侧 面抽运 Nd:YAG 激光器进行被动调 Q。根据 ABCD 定律重点计算了谐振腔参数,实现了大功率连续 LD 侧面抽运 Nd:YAG 激光器被动调 Q 运转,获得 了高重复频率大能量脉冲激光。

2 理论分析

Cr⁴⁺:YAG 晶体初始透射率和输出镜最佳透射 率对连续抽运被动调 Q 激光器来说至关重要,它将 直接决定激光器能否运转,并将直接影响激光脉冲 的输出能量、峰值功率和脉冲宽度等重要参数。故 合理设计 Cr⁴⁺:YAG 晶体初始透射率和输出镜最 佳透射率是实验能够顺利进行的前提。

激光器要正常运转,就必须使腔内的增益大于 等于腔内损耗。在大功率连续被动调 Q 激光器中, 除了散射、吸收、衍射等损耗,还包括 Cr⁴⁺:YAG 的 激发态吸收损耗。因此,要设计合适的 Cr⁴⁺:YAG 初始透射率和输出镜最佳透射率,就要知道所用激 光头的增益和线性损耗。为得到准确数据,实测了 所用激光头的增益和线性损耗,最后通过分析取 Cr⁴⁺:YAG 初始透射率为83.69%,输出镜透射率为20%。

实现大功率连续激光器被动调 Q 的另一个关 键是 Cr⁴⁺:YAG 晶体散热问题。由于连续抽运, Cr⁴⁺:YAG 的热能将持续累积,使其在瞬间炸裂,故 必须设计合理高效的冷却结构,使 Cr⁴⁺:YAG 晶体 的热能疏导出去。实验中设计了环形直接水冷结构, 与以往的冷却结构相比,这种结构的冷却效果更为 显著。

完成上述工作后,重点分析计算了激光器谐振 腔参数。将具有热焦距效应的 Nd: YAG 棒等效为 一个焦距 f 随抽运功率 P 变化的热厚透镜,如图 1 所示。M₁ 是曲率半径为 R 的反射镜, M₂ 是平面 镜, l 为激光棒长度, h 表示热厚透镜的主平面 H₁ (或 H₂)到棒端面的距离。热厚透镜的屈光度 D 和 主平面位置 h 表示为

$$D = 1/f, \quad h = l/2n,$$
 (1)

式中n是Nd:YAG棒的折射率。

图 1 内含热透镜的两镜谐振腔 Fig. 1 Schematic plan of resonator which contains thermal lens element

厚透镜的光学传输矩阵 M 为

$$\boldsymbol{M} = \begin{bmatrix} 1 - h/f & 2h - h^2/f \\ -1/f & 1 - h/f \end{bmatrix}.$$
 (2)

以 M₁ 镜为参考的单程传输矩阵 M'为

$$\mathbf{M}' = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & l_2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1-h/f & 2h-h^2/f \\ -1/f & 1-h/f \end{bmatrix} \begin{bmatrix} 1 & l_1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1-(h+l_2)/f & l_1+l_2+2h-(h+l_1)(h+l_2)/f \\ -1/f & 1-(h+l_1)/f \end{bmatrix}.$$
(3)

设
$$L_1 = l_1 + h, L_2 = l_2 + h, 则(3)$$
式变为

$$\mathbf{M}' = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 - L_2/f & L_1 + L_2 - L_1 L_2/f \\ -1/f & 1 - L_1/f \end{bmatrix},\tag{4}$$

往返一周传输矩阵为

$$\mathbf{M}'' = \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} d & b \\ c & a \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -2/R & 1 \end{bmatrix} = \begin{bmatrix} 4G_1G_2 - 1 - 2G_2 & 2IG_2 \\ \frac{2}{L}(2G_1G_2 - G_1 - G_2) & 2G_2 - 1 \end{bmatrix}.$$
 (5)

则镜 M₁ 面上入射高斯光束的束宽 w₁ 为

$$w_1^2 = \frac{\lambda L}{\pi} \left[\frac{G_2}{G_1 (1 - G_1 G_2)} \right]^{1/2}, \qquad (6)$$

式中 G_1 , G_2 是有源谐振腔的G参数,距镜 M_1 为 d_1 处的束宽 $w(d_1)$ 为

$$w(d_1) = w_1 \sqrt{\left(1 - \frac{d_1}{R}\right)^2 + \left(\frac{\lambda d_1}{\pi w_1^2}\right)^2}.$$
 (7)

根据(1)~(7)式,用 Matlab 编程,在腔长、工作物质 位置和抽运功率(即热透镜焦距)确定的情况下(参 数值如表1所示),得到了谐振腔中的高斯光束束 宽,如图2所示。从图中可以看出,平-凹腔中高斯 光束束宽最小,平-凸腔中高斯光束束宽最大。平-凸腔中高斯光束束宽分别约是平-平腔和平-凹腔的 1.54倍和2.57倍。高斯光束束宽越大,对应的模体 积就越大,激光器输出能量就越大,为得到大能量输 光

表 1 激光器谐振腔数值模拟所用参数

Table 1 Parameters of laser resonator's numerical simulation

Parameters	Value
Thermal focal length f /cm	46
Refractivity of Nd: YAG n	1.82
Length of Nd: YAG l /cm	6.5
Resonator cavity length L /cm	45
Distance of Nd: YAG and rear mirror l_1/cm	33.5
Distance of Nd:YAG and front mirror l_2/cm	5
Injection current I /A	11.2
Radius of curvature of rear mirror $R \ /mm$	-500

and plane-convex cavity (c)

在抽运功率、工作物质位置和全反镜曲率半径 确定的情况下,得到高斯光束束宽与谐振腔腔长的 关系曲线,如图 3 所示。从图中可以看出,腔长在 25~46 cm 时,高斯光束束宽随腔长的增加缓慢增 加,之后迅速增加,超过 51 cm 后谐振腔出稳区。选 择腔长为 50 cm,此时谐振腔在稳定区内并且高斯

光束束宽较大。

3 实验装置

连续 LD 侧面抽运被动调 Q Nd: YAG 激光器的 实验装置如图4所示。激光头采用 3 行 3 列共 9 个 20 W的 LD 侧面抽运工作物质,最大抽运功率 180 W;工作物质为掺杂 0.6% Nd³⁺离子的 Nd: YAG 棒(\$ mm×65 mm),整个激光器输出 1064 nm 的连 续多模激光 0~55 W。激光器谐振腔采用平-凸腔, M₁ 为全反镜,镀 1064 nm 全反膜,曲率半径为 500 mm;M₂ 为输出镜,反射率 R=80%。Cr⁴⁺: YAG 晶体直径为10 mm,初始透射率为 83.69%,两端镀 1064 nm 增透膜,采用自行设计的调 Q 盒对其冷却, Cr⁴⁺: YAG 晶体与 Nd: YAG 棒用同一台水冷机分两 支路冷却。采用消衍射效应光阑对多模激光选模。激 光器输出的连续激光用中国计量科学研究院的 ALM-95[]型功率计测量;调 Q 脉冲激光用 AD500-8 型雪崩光电二极管接收,并输入到 TDS2012B 型 100 MHz存储示波器上观察和显示脉冲波形;调 Q 激 光经分束镜分束后进入 LBA-712PC-D 型光束质量分 析仪读取光斑强度分布。

Fig. 4 Experimental device of passively Q-switched operation Nd: YAG laser side-pumped by CW laser diode

4 实验结果与分析

未加入 Cr4+: YAG 晶体和选模光阑时,激光器处 于连续多模运转状态,阈值抽运功率为53.46W,在 抽运功率为162.34 W时,激光器输出多模激光 55.6 W。加入选模光阑,激光器为 TEM₀₀ 模运转,在 抽运功率为 136.20 W 时,输出基模激光 30.3 W。将 Cr4+:YAG 晶体插入腔中,Cr4+:YAG 晶体并未出现 炸裂现象,这说明水冷结构设计是成功的。用示波器 观察到了被动调 Q 脉冲,被动调 Q 激光器的阈值抽 运功率为 99.84 W,在抽运功率为 136.20 W时,输出 被动调Q激光平均功率为10.4W,光-光转换效率 7.63%,相应的单脉冲能量为 2.46 mJ,峰值功率 24.36 kW。示波器上观察到的 136.20 W 抽运功率 下调Q脉冲序列和相应展开后的单脉冲波形如图 5 所示,此时的脉冲激光光强分布如图 6 所示。从图 5 中可以看出,调Q脉冲序列基本上是等幅度、等间隔 的,这是因为脉冲间隔与 Nd: YAG 激活离子的上能 级寿命近似相等,因而调Q脉冲很稳定。脉冲重复频 率为 4.22 kHz, 脉宽为 101 ns, 脉冲幅度抖动约为 5%,频率抖动约为5%,光束远场发散角小于 1.5 mrad。调Q脉冲产生幅度抖动和频率抖动的原 因是:被动调 Q 机理决定了激光脉冲会产生抖动; Cr⁴⁺:YAG 晶体被漂白后重新恢复吸收的时间较长, 在此期间外界的随机变化导致增益介质上的初始反 转粒子数不一致,同时由于脉冲之间存在着相互干 扰,因而脉冲幅度和频率稳定性受到影响。从图6中 可以看出调Q脉冲激光为基模运转,光束质量M²因 子约为1.3。

在阈值以上改变抽运功率,被动调 Q 激光器的 单脉冲能量、峰值功率、脉冲重复频率和脉冲宽度都

图 5 调 Q 脉冲序列(a)和单脉冲波形(b) Fig. 5 Q-switched pulse trains (a) and single pulse shape (b)

图 6 脉冲激光光强分布

Fig. 6 Spatial form of the Q-switched output 随之改变。被动调 Q 激光器单脉冲能量、峰值功 率、重复频率和脉宽与抽运功率的关系如图7所示。 从图 7 中可以看出,调 Q 激光单脉冲能量、峰值功 率和脉冲重复频率先是随抽运功率的增加而增加, 达到最大值后则随抽运功率的增加而减小。单脉冲 能量随抽运功率的增加先增加后减小的原因是:当 抽运功率较大时,增益介质的激发态吸收和能量传 递上转换过程明显,激发态吸收使得激光上能级的 Nd³⁺粒子吸收抽运光而跃迁到较高能级,消耗了 1064 nm 激光,使输出能量下降;上转换过程使处于 激光上能级的两个 Nd³⁺ 粒子相互作用,其中一个粒 子跃迁到激光下能级,另一个粒子被激发到较高能 级,因而减少了上能级粒子的大量聚集,削弱了激光 运转;在大功率抽运条件下 Nd: YAG 和 Cr4+: YAG 的热透镜效应严重,使谐振腔发生变化,输出能量降 低,故在大功率抽运条件下,调Q激光单脉冲能量 随抽运功率的增加而快速减小。

Fig. 7 Pulse energy, peak power(a), and repetition rate, pulse width (b) versus pump power

大功率抽运条件下脉冲重复频率随抽运功率增加而减小的原因是:在大功率抽运条件下,Nd:YAG的激发态吸收和能量传递上转换作用使上能级粒子数减小,所以自发辐射的光强变小,即腔内振荡光束的功率密度变小,因而不易使 Cr⁴⁺:YAG 饱和;在大功率抽运下 Cr⁴⁺:YAG 激发态吸收的加剧造成了其上能级粒子数减小,延长了漂白时间;在大功率抽运下 Cr⁴⁺:YAG 的热效应显著,使其饱和特性发生变化,小信号透射率减小,也延长了漂白时间。

脉冲宽度随抽运功率增加而减小,原因为:在抽 运功率较小时,随着抽运功率的增加,腔内净增益系 数变大,腔内光子数的增长及反转粒子数的衰减更 迅速,所以脉冲的建立及熄灭过程就更短,脉冲变 窄;在较高抽运功率下,Cr⁴⁺:YAG的激发态吸收和 热效应使得它更不易漂白,相当于 Cr⁴⁺:YAG 小信 号透射率减小和腔插入损耗增大,这就造成激光脉 冲变窄。

峰值功率随抽运功率的增加先增加后减小的原因为:峰值功率近似等于单脉冲能量与脉宽的比值, 其中单脉冲能量随注入电流的增加先增加后减小,脉宽随抽运功率的增加而减小,故峰值功率随抽运 功率的增加先增加后减小。

5 结 论

光

采用 Cr⁴⁺:YAG 做可饱和吸收体,通过对其初 始透射率、输出镜反射率和谐振腔的选择,实现了连 续 LD 侧面抽运高重复频率大能量被动调 Q Nd: YAG 激光器的有效运转,在抽运功率 136.20 W 时,得到了单脉冲能量 2.46 mJ,峰值功率 24.36 kW,重复频率 4.22 kHz,脉宽 101 ns 的被动 调 Q 激光,并实现了 TEM₀₀模运转,调 Q 脉冲幅度 抖动约为 5%,频率抖动约为 5%,光束远场发散角 小于1.5 mrad,光束质量 M^2 因子约为 1.3。

参考文献

- 1 A. Agnesi, S. Dell'acqua, G. C. Reali. High performance Cr⁴⁺
 :YAG Q-switched CW diode pumped Nd:YAG laser[J]. Optical and Quantum Electronics, 1997, 29(3): 429~433
- 2 Y. Wang, L. Huang, M. Gong *et al.*. 4. 5-ns pulse generation at a 500-kHz repetition rate from a short cavity acoustooptically *Q*-switched Nd: YVO₄ laser[J]. *Laser Physics*, 2007, **17**(10): 1199~1203
- 3 Chunhua Zuo, Jingliang He, Haitao Huang et al.. Efficient passively Q-switched operation of a diode-pumped Nd:GGG laser with a Cr⁴⁺: YAG saturable absorber [J]. Optics & Laser Technology, 2009, 41: 17~20
- 4 Wang Jiaxian, Zhuang Xinwei. Cr⁴⁺: YAG high repetition rate passively Q-switched Nd: YVO₄ laser pumped by laser diode[J]. Acta Photonica Sinica, 2006, **35**(4): 494~498 王加贤, 庄鑫巍. LD 泵浦 Cr⁴⁺: YAG 高重复频率被运调 Q Nd: YVO₄激光器[J]. 光子学报, 2006, **35**(4): 494~498
- 5 Ping Yan, Haisheng Wu, Mali Gong *et al.*. LD side-pumped passively Q-switched Yb: YAG slab laser[J]. *Optics and Lasers in Engineering*, 2004, **42**(4): 413~419
- 6 P. Misra, K. Ranganathan, S. M. Oak. High efficiency TEM₀₀ mode, diode-pumped, conduction-cooled, Nd:YAG zig-zag slab laser[J]. *Opt. Commun.*, 2008, **281**(4): 658~662
- 7 Zhimin Wang, Jianqiu Xu, Weibiao Chen. High-power passively Q-switched ultra-thin slab lasers[J]. Chin. Opt. Lett., 2007, 5(1): 36~38
- 8 Xiaojin Cheng, Zhimin Wang, Fan Chen et al.. Edge-pumped passively Q-switched thin Nd: YAG slab lasers [J]. Chin. Opt. Lett., 2008, 6(5): 364~365
- 9 T. Omatsu, A. Minassian, M. J. Damzen. Passive Q-switching of a diode-side-pumped Nd-doped mixed gadolinium yttrium vanadate bounce laser [J]. Appl. Phys. B, 2008, 90 (3-4): 445~449
- 10 Tang Hao, Zhu Xiaolei, Jiang Benxue et al.. Laser-diode-array side pumped Nd: YAG ceramic laser [J]. Chinese J. Lasers, 2008, 35(12): 2001~2004
- 唐 吴,朱小磊,姜本学等. 侧面抽运国产 Nd: YAG 陶瓷棒的 激光特性[J]. 中国激光, 2008, **35**(12): 2001~2004